

Become Future Fit

Canopus Business Management Group - India

Jup

You will learn

Learn what are Confidence Intervals & why should you know about it

Level of Difficulty

It represents the uncertainty in the

estimation of true mean(or even the

variation).

In some cases the uncertainty is not symmetrical and the '+' term is different from the '-' term; e.g., for σ .

Confidence Intervals are nothing but upper

and lower limits of a band within which we

find the true mean.

95.45 % = 2o

% Area under Curve = $Z\sigma$

Area under the Normal Curve

Central Limit Theorem

The standard deviation of the SAMPLE MEAN:

$$\sigma_{x} = \frac{\sigma}{\sqrt{n}}$$

Standard Error of Mean (SE)

% Area under Curve = $Z \mathcal{E}_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$

Population Individual Values Vs Sample Means Values

% Area under Cuve =
$$Z_{\alpha/2}\left(\frac{\sigma}{\sqrt{n}}\right)$$

Confidence Interval for Means ent Group

Become Future Fit

You will learn

Learn how to compute Confidence Intervals for means

Level of Difficulty

CI for Mean of

Continuous Data

 $\mathbf{CI} = \mathbf{\overline{X}} \pm \mathbf{Z}_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$

 $Z_{\alpha/2}$ = normal distribution value for a given confidence level

 \overline{X} = mean of data σ = population standard deviation n = sample size

Competency Level Assessment

Competency Level Assessment

Company has established norms for the competency of their executives in aptitude test related to a specific subject. The historic population data suggests that average 73.2 with a standard deviation of 8.6.

If 45 randomly selected persons and have a average 76.7, find the confidence interval of the scores at 95% level of confidence

CI for Mean of Continuous Data

CI for Mean of Continuous Data

- This formula only applies when σ is known, which is rare.
- If the sample size is large (exceeds 50), it is a good approximation.

Become Future Fit

You will learn

Learn about what is Degrees of Freedom & Where will it be applied

Level of Difficulty

The number of independent pieces of information that go into the estimate of a parameter is called the degrees of freedom

DoF is the number of chances we

have to determine the characteristics of a system.

Example

- If there are 50 samples, then the degree of freedom will be 49
- If there are 5 groups/levels, the degree of freedom will be 4

Sampling Distribution

- 1. t Distribution
- 2. F Distribution
- 3. Chi-Square Distribution

t Distribution

Become Future Fit

Canopus Business Management Group - India

Jup

You will learn

Learn about t distribution & its relevance to data analysis

Level of Difficulty

When the Sample Size < 30

&

Population SD is not known

t-Distribution

- Looks like Normal Distribution
- Has fatter tails

Canopus Business Management Group - India

t-Distribution

Developed in 1908 by William Gosset

Canopus Business Management Group - India

t-Distribution

Properties

- Mean of t-distribution = 0
- Variance = v / (v 2),
- Where v is the degrees of freedom
- t-distribution Shape & Scale parameters are dependent on Degrees of Freedom

Properties

- Always Variance > 1
- When $v \sim Large$
 - Variation ~ 1 [v / (v 2)]
 - t Distribution → Standard Normal
 Distribution

Fatter Tails

t- statistic

Sample Size	t-value (α/2 =.025)
2	12.71
3	4.30
5	2.78
10	2.26
20	2.09
30	2.05
100	1.98
1000	1.96

Use t distribution when population distribution is

normal or any bell-shaped distribution & sampling

distribution has below characteristics

Sample	Characteristics
< 15	Sampling distribution is symmetric, unimodal, no outliers
16~40	Sampling distribution is moderately skewed, unimodal, without outliers
> 40	Sampling distribution doesn't have outliers.

Don't use t distribution when population is

not approximately normal

Canopus Business Management Group - India

When to use

t-Distribution

Confidence Intervals for t Distribution

Become Future Fit

Jup

You will learn

Learn to compute the Confidence Limits for sample mean using t-distribution

Level of Difficulty

Sample Data

Inspection of 10 items gave the following

measurements :

0.983, 1.002, 0.998, 0.996, 1.002, 0.983,

0.994, 0.991, 1.005 & 0.986.

What is the likely variation in the

measurements with 99% confidence ?

CI with t Distribution

$\overline{\mathbf{X}}$ = Mean

Formula

- s = Standard deviation
- n = Sample size

 υ = Degrees of freedom, used in some tables & calculated as n-1 for this test.

 $t_{\alpha/2,n-1}$ = Value from t distribution

Exclusively for your use, not for distribution without permission

Confidence Interval for Proportions

Become Future Fit

Canopus Business Management Group - India

ent Group

You will learn

Learn to compute Confidence Interval for proportion data

Level of Difficulty

An internal auditor randomly selects

200 documents for an audit. He finds 5

defective documents. Calculate a 90%

confidence interval for the proportion

of good documents.

Scenario

Assumptions

If n> 5/min(p,q)

Binomial tends to Normal

Mean (μ) = n*p; SD (σ) = sqrt[n*p*q]

CI for Proportions Discrete Data

Where...

p = average proportion seen in the sample

n = sample size

 $\alpha = risk$

CI for Proportions Discrete Data

Binomial Approximates to Normal Distribution for large Samples.

Use for large sample sizes

Chi-square Distribution ent Group

Become Future Fit

You will learn

Learn about Chi-square distribution & its relevance to data analysis

Level of Difficulty

Chi-Squared Distribution

If a process has cycle time data that is

normal, then the SUM OF SQUARES of its

standard normal variable ($\mu = 0$ and $\sigma = 1$)

forms a Chi-square distribution

Chi-Squared Distribution

Chi-square is a family of distributions

Canopus Business Management Group

Chi-Squared Application

- For characterizing & analyzing dispersion of any data (Sum of Squares)
- For both Continuous & Discrete data:
 - Variance (Goodness of Fit)
 - Observed Vs Expected (Contingency Tables)

- Chi-square distribution has one parameter, degrees of freedom(v)
 - Mean = v
 - Standard Deviation = Sqrt(2v)
- Chi-square is always a positive value

Properties

Exclusively for your use, not for distribution

without permission

 As Degree of Freedom increases, Chisquare distribution tends to normal curve

 $\frac{(n-1)s^2}{\chi^2_{(\alpha/2),(n-1)}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{(1-\alpha/2),(n-1)}}$

Where...

- n = sample size
- $s^2 = variance$

 $\alpha = risk$

CI will not be symmetrical on both sides

Canopus Business Management Group - India

CI for Variance

CI for Standard Deviation

The standard deviation of process parameter is 0.86 mins

as ascertained from 12 samples. Estimate 95% CI for

Standard Deviation of this data.

CI for Standard Deviation

Descriptive Statistics

			95% CETOLO
			using
N	StDev	Variance	Chi-Square
12	0.860	0.740	(0.609, 1.460)

F Distribution ent Group

Become Future Fit

You will learn

Learn about F Distribution and its relevance to data analysis

Level of Difficulty

F-Distribution

The F distribution is the ratio of two

chi-square distributions with degrees

of freedom (n1-1) and (n2-1)

respectively

F Distribution is a family of distributions

F PDF(1, 1 df) F P D F (1, 10 df) 4 ۵ Probability Density Pro bability Density з з 2 2 1 1 0 1 0 a 2 4 a 2 5 x з 5 з 4 x FPDF (10, 1 eff) F PDF (10, 10 df) 0.5 0.8 0.7 Probability Density Probability Density 0.4 0.6 0.5 0.3 0.4 0.2 0.3 0.2 0.1 0.1 **o** -O. à 2 x à 2 1 з 4 1 з 4 5 5 x

F-Distribution

F-Distribution

The ratio of two χ_2 distribution with different degrees of freedom form a

F distribution as below:

 $F_{\nu_1,\nu_2} = \frac{\chi_1^2/\nu_1}{\chi_2^2/\nu_2} \quad (\nu_1 \le \nu_2)$

F-Distribution

Ratio of two sample variances from the same normally distributed population

Business Manage

Application

Used to compare variances of

different samples

Many statistical tests are based on

F test