Finding Probabilities

1. A critical dimension was produced in a particular machining station. Data collected from the samples had Mean = 20.2 ; SD=0.01
a. If 20.222 is USL, what \% is likely to be rejected

b. For a trial batch, you want only components with dimensions between 20.18 \& 20.22. What \% of components are you likely to get?

c. If wish to have 99.9% acceptable rate from this process, what should be USL?

Binomial Distribution

2. There is 1% probability of detecting an error in a transaction by the checker (inspector) in transaction processing team. Every day 150 transactions are processed.
a. Quality Head wants to the probability that there will be any errors in a given day?

Probability Density Function

Binomial with $\mathrm{n}=150$ and $\mathrm{p}=0.01$

x	$P(X=x)$
0	0.221452

Probability of Any Errors = 1 - Probability(No errors)

$$
=1-0.221452=0.77855
$$

b. What is the probability of 2 or more errors in a given day?

Cumulative Distribution Function

$$
\text { Binomial with } \mathrm{n}=150 \text { and } \mathrm{p}=0.01
$$

x	$P(X \leq x)$
1	0.556985

Identifying Distributions

3. The data for installation of broad band services at customer location is collected. Based on the data, identify the respective distribution for each of the parameter. (Source:
Distribution_Telecom data_Practicefile)

Installation TAT in Hours	3 Parameter Weibull
Commission to SA	3 Parameter Weibull
No. of installations requests in queue	3 Parameter Weibull
Prcessing Time@ Back Office	Normal (Visual Fit)
Distance from the SA office	Logistic
Distance travelled	Logistic
Installation Time by SA	3 Parameter Weibull

Poisson Distribution

4. The "No of installations in queue" is measured hourly (so every data point is per hour data) in attached file. (Source: Distribution_Telecom data_Practicefile). What is the probability that there will be 17 installations in queue in any given hour?

Probability Density Function

Poisson with mean $=10.256$

x	$P(X=x)$
17	0.0151857

a. What is the probability that there will be just 3 installations in queue?

Probability Density Function

Poisson with mean $=10.256$

$$
\begin{array}{lr}
x & P(X=x) \\
\hline 3 & 0.0063191
\end{array}
$$

b. If you were to create capacity of the downstream process based on the number of installations in queue, at 95% how many installations should be serviced by downstream process to attain nearly a single piece flow (no waiting)?

For 17, the probability is greater than 96.7%. At 95%, the capacity is a decimal as this is a discrete distribution. Hence 17 is the answer.

