Finding Probabilities

1. A critical dimension was produced in a particular machining station. Data collected from the samples had Mean = 20.2 ; SD=0.01

a. If 20.222 is USL, what % is likely to be rejected

b. For a trial batch, you want only components with dimensions between 20.18 & 20.22. What % of components are you likely to get?

c. If wish to have 99.9% acceptable rate from this process, what should be USL?

Binomial Distribution

- 2. There is 1% probability of detecting an error in a transaction by the checker (inspector) in transaction processing team. Every day 150 transactions are processed.
 - a. Quality Head wants to the probability that there will be any errors in a given day?

Probability Density Function

Binomial with n = 150 and p = 0.01

x P(X = x) 0 0.221452

Probability of Any Errors = 1 – Probability(No errors)

= 1 -0.221452 = 0.77855

b. What is the probability of 2 or more errors in a given day?

Cumulative Distribution Function

Binomial with n = 150 and p = 0.01

x P(X ≤ x) 1 0.556985

Identifying Distributions

3. The data for installation of broad band services at customer location is collected. Based on the data, identify the respective distribution for each of the parameter. **(Source:**

Installation TAT in Hours	3 Parameter Weibull
Commission to SA	3 Parameter Weibull
No. of installations requests in queue	3 Parameter Weibull
Prcessing Time@ Back Office	Normal (Visual Fit)
Distance from the SA office	Logistic
Distance travelled	Logistic
Installation Time by SA	3 Parameter Weibull

Distribution_Telecom data_Practicefile)

Poisson Distribution

4. The "No of installations in queue" is measured hourly (so every data point is per hour data) in attached file. (Source: Distribution_Telecom data_Practicefile). What is the probability that there will be 17 installations in queue in any given hour?

Probability Density Function

Poisson with mean = 10.256

x P(X = x) 17 0.0151857

a. What is the probability that there will be just 3 installations in queue?

Probability Density Function

Poisson with mean = 10.256

```
x P(X = X)
3 0.0063191
```

b. If you were to create capacity of the downstream process based on the number of installations in queue, at 95% how many installations should be serviced by downstream process to attain nearly a single piece flow (no waiting)? For 17, the probability is greater than 96.7%. At 95%, the capacity is a decimal as this is a discrete distribution. Hence 17 is the answer.

